Mathematics 1 of 2

[1] Consider the following equation,

$$\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F} \tag{1}$$

where r is the position vector in the two-dimensional plane, $F = -\frac{1}{r^2} e$, r = re, |e| = 1, $r \neq 0$.

- [1-1] Suppose $F = \nabla \phi$, where ϕ is the scalar value, and the radial components of F and $\nabla \phi$ in the polar coordinate system are expressed as $-\frac{1}{r^2}$ and $\frac{\partial \phi}{\partial r}$, respectively. Find ϕ .
- [1-2] Let the position vectors of points A and B be \boldsymbol{a} and \boldsymbol{b} . Here, $|\boldsymbol{a}| = a \neq 0$, $|\boldsymbol{b}| = b \neq 0$, $a \neq b$. Express the line integral $\int_C \boldsymbol{F} \cdot d\boldsymbol{r}$ along the path C from A to B using a and b. The path C can be chosen freely by yourself. Also, calculate the circular integral $\oint \boldsymbol{F} \cdot d\boldsymbol{r}$ by taking a different path from C that returns to point A.
- [1-3] Let $d\mathbf{r}/dt$ at the points A and B be \mathbf{v}_a and \mathbf{v}_b , respectively. Here, $|\mathbf{v}_a| = v_a$, $|\mathbf{v}_b| = v_b$. Express the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ along the path \mathcal{C} from A to B using v_a and v_b . The following equation can be used,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \frac{d^{2}\mathbf{r}}{dt^{2}} \cdot d\mathbf{r} = \int_{C} \left(\frac{d^{2}\mathbf{r}}{dt^{2}} \cdot \frac{d\mathbf{r}}{dt} \right) dt.$$

[1-4] Taking the cross products with r on both sides of the equation (1), the following equation can be obtained,

$$r \times \frac{d^2r}{dt^2} = \mathbf{0}.$$

Based on this equation, prove the following equation,

$$r \times \frac{d\mathbf{r}}{dt} = \mathbf{c}$$

where c is a constant vector.

Mathematics	2 of 2
-------------	--------

[2] Answer the following questions when the Laplace transform of function f(t) is defined as follows.

$$L(s) = \int_0^\infty f(t) e^{-st} dt$$

- [2-1] Calculate the Laplace transform $L_1(s)$ of the function $f_1(t) = e^{at}$. Note that a is a real number (a < Re[s]).
- [2-2] Calculate the Laplace transform $L_2(s)$ of the function $f_2(t) = te^{at}$. Note that a is a real number (a < Re[s]).
- [2-3] Find the pole of $L_1(s)$ and show it in the complex plane with respect to s.
- [2-4] Prove that the Laplace transform $L_3(s)$ of the function $f_3(t) = e^{at} \sin bt$ is $\frac{b}{(s-a)^2 + b^2}$. Also, answer in what region in the complex plane the poles of $L_3(s)$ must exist for which the function $f_3(t)$ converges to a finite value when $t \to \infty$. Note that a and b are real numbers ($a < \operatorname{Re}[s]$).
- [2-5] Consider the Laplace transform $L_g(s)$ of the function $g(t) = \sum_{k=1}^N A_k e^{a_k t} \sin(b_k t + \phi_k)$. Answer in what region in the complex plane the poles of $L_g(s)$ must exist for which the function g(t) converges to a finite value when $t \to \infty$. Note that a_k , b_k , ϕ_k , and A_k are real numbers (max $(a_k) < \text{Re}[s]$), and N is a natural number.
- [2-6] When the function u(t) satisfies the following ordinary differential equation, answer the range of a real number p for which the function u(t) converges to a finite value when $t \to \infty$.

$$\frac{d^2u}{dt^2} + \frac{du}{dt} + pu = \sin 2t$$